1,898 research outputs found

    Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single molecule pulling experiments

    Full text link
    We have used kinetic Monte Carlo simulations to study the kinetics of unfolding of cross-linked polymer chains under mechanical loading. As the ends of a chain are pulled apart, the force transmitted by each crosslink increases until it ruptures. The stochastic crosslink rupture process is assumed to be governed by first order kinetics with a rate that depends exponentially on the transmitted force. We have performed random searches to identify optimal crosslink configurations whose unfolding requires a large applied force (measure of strength) and/or large dissipated energy (measure of toughness). We found that such optimal chains always involve cross-links arranged to form parallel strands. The location of those optimal strands generally depends on the loading rate. Optimal chains with a small number of cross-links were found to be almost as strong and tough as optimal chains with a large number of cross-links. Furthermore, optimality of chains with a small number of cross-links can be easily destroyed by adding cross-links at random. The present findings are relevant for the interpretation of single molecule force probe spectroscopy studies of the mechanical unfolding of load-bearing proteins, whose native topology often involves parallel strand arrangements similar to the optimal configurations identified in the study

    Out-of-surface vortices in spherical shells

    Get PDF
    The interplay of topological defects with curvature is studied for out-of-surface magnetic vortices in thin spherical nanoshells. In the case of easy-surface Heisenberg magnet it is shown that the curvature of the underlying surface leads to a coupling between the localized out-of-surface component of the vortex with its delocalized in-surface structure, i.e. polarity-chirality coupling.Comment: 6 pages, 4 figure

    Increasing the micromechanical and tribological characteristics of an austenitic steel by surface deformation processing

    Full text link
    Frictional treatment (FT) with a sliding indenter forms highly dispersed (nano- and submicrocrystalline) austenitic structures with a hardness of 720 HV 0.025 in the surface layer of the 03Cr16Ni14Mo3Ti austenitic strain-resistant steel. According to the data on microindentation, FT increases the strength and of the surface layer of the austenitic steel and its resistance to elastic and plastic deformation. A high effectiveness of FT in the improvement of the tribological properties of the steel is demonstrated; namely, wear resistance increases 4 times under conditions of boundary friction as compared to the undeformed state. This is due to reduced plastic edging on the nanostructured surface. © 2018 Author(s)

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    Brittle porous material mesovolume structure models and simulation of their mechanical properties

    Get PDF
    To study the mechanical response of brittle porous materials at mesoscale, porous samples were generated and their deformation was numerically modelled. Two types of pore space morphology such as overlapping spherical pores and overlapping spherical solids were explicitly considered. For deformation modelling, an evolutionary approach including the nonlinear constitutive equations used to describe damage accumulation and its impact on the degradation of the solid frame strength properties was applied. The numerical results have shown that an average stress-strain diagram is sensitive to pore morphology as well as porosity

    Nondegenerate 3D complex Euclidean superintegrable systems and algebraic varieties

    Full text link
    A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n-1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multi-separability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schroedinger operator, deep connections with special functions and with QES systems. Here we announce a complete classification of nondegenerate (i.e., 4-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in 10 variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly 10 nondegenerate potentials.Comment: 35 page
    corecore